中日韩一卡二卡三卡四卡免-中日韩一卡2卡三卡4卡在线-中日韩va无码-中国一区二区三区在线观看-中国无码人妻丰满熟妇啪啪软件-中国无码免费视频观看

撥號18861759551

你的位置:首頁 > 技術文章 > Laser Damage Threshold Testing

技術文章

Laser Damage Threshold Testing

技術文章

Laser Damage Threshold Testing

Laser Damage Threshold (LDT), also known as Laser Induced Damage Threshold (LIDT), is one of the most important specifications to consider when integrating an optical component such as a mirror into a laser system. Using a laser in an application offers a variety of benefits to a standard light source, including monochromaticity, directionality, and coherence. Laser beams often contain high energies and are capable of damaging sensitive optical components. When integrating a laser and optical components into a system, it is crucial to understand the effects of laser beams on optical surfaces and how laser damage threshold is quantified for optical components.

 

The type of damage induced to an optical component by a laser beam is dependent on the wavelength, pulse length, polarization, rep rate, and spatial characteristics among other factors. During exposure to a continuous wave (CW) laser, failure can occur due to laser energy absorption and thermal damage or melting of the substrate material or the optical coating. The damage caused by a short nanosecond laser pulses is typically due to dielectric breakdown of the material that results from exposure to the high electric fields in the laser beam. For pulse widths in between these two regimes or for high rep rate laser systems, laser induced damage may result from a combination of thermally induced damage and breakdown. For ultrashort pulses, about 10ps or less, nonlinear mechanisms such as multiphoton absorption and multiphoton ionization become important.

 

Testing Laser Damage Threshold

Laser-Induced Damage Threshold (LIDT) testing is a good method for quantifying the amount of electromagnetic radiation an optical component can withstand. There are a variety of different LDT tests. For example, Edmund Optics follows the ISO-11254 procedures and methods, which is the industry standard for determining the laser damage threshold of an optical component. Utilizing the ISO-11254 standard enables the fair comparison between optical components from different manufacturers.

 

Edmund Optics' LDT testing is conducted by irradiating a number of test sites with a laser beam at different energy densities for pulsed lasers, or different power densities for CW lasers. The energy density or power density is incrementally increased at a minimum of ten sites at each increment. The process is repeated until damage is observed in of the irradiated sites. The LDT is the highest energy or power level at which no damage is observed in any of the irradiated sites. Inspection of the sites is done with a Nomarsky-type Differential Interference Contrast (DIC) microscope with 100X - 150X magnification. Visible damage is observed and the results are recorded using pass/fail criteria. Figure 1 is a typical damage probability plot of exposure sites as a function of laser pulse energy.

Figure 1: Exposure Histogram of Laser Damage Threshold Probability versus Exposure Site

 

In addition to uncoated optical components, optical coatings are also subject to damage from the presence of absorption sites and plasma burn. Figure 2 is a real-world image of coating failure due to a coating defect. For additional information on the importance of LDT testing on coatings, view The Complexities of High-Power Optical Coatings.

Figure 2: Coating Failure from 73.3 J/cm2 Source due to Coating Defect

 

Defining Laser Damage Threshold

There are many variables that affect the Laser Damage Threshold (LDT) of an optical component. These variables can be separated into three categories: laser, substrate, and optical coating (Table 1).

Variables that Affect LDT/LIDT

Laser

Substrate

Coating

Output Power

Material

Deposited Material

Pulse duration

Surface Quality

Deposition Process

Pulse Repetition Rate

Cleanliness

Pre-Coating Preparation and Cleaning

Beam Profile

Reactivity to the Environment

Lot-to-Lot Control

Beam Diameter (1/e2)

Material Absorption

Coating Design and Optimization

Wavelength

Material Homogeneity

Protective Layers

LDT is typically quantified by power or energy densities for CW and pulsed lasers, respectively. Power density is the power per cross-sectional beam area of the laser beam (typically W/cm2). Similarly, energy density is the energy per cross-sectional beam area of a specific pulse duration (typically given in J/cm2). Lasers are available with a multitude of different wavelengths and pulse durations, therefore, it is useful to be able to scale LDT data to help determine if an optical component is suitable for use with a given laser. As a general rule of thumb, the following equation can be used to roughly estimate LDT from given data, LDT(λ1,τ1), LDT(λ2,τ2). This approximation only holds when scaling over relatively small wavelength or timescale ranges, and can not be used to extrapolate e.g. from ns to fs pulses, or from UV to IR.

In this equation τ1 is the laser pulse length and λ1 is the laser wavelength for the given LDT and τ2 is the laser pulse length and λ2 is the laser wavelength with unknown LDT. For example, the LDT for a mirror is 20 J/cm2 at 1064nm @ 20 ns. The LDT using the scaling rule above at 532nm and 10 ns pulse is 20 x (532/1064) x (10/20)½ or about 7 J/cm2. For longer pulses and high rep rate pulsed lasers it is also necessary to check the CW power density limit as well. The scaling equation is not applicable to ultra-short ps to fs pulsed lasers. When using “scaling” rules, safety factors of at least two times the calculated values should be applied to help ensure optical elements will not be damaged.

聯系我們

地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:[email protected]
24小時在線客服,為您服務!

版權所有 © 2025 江陰韻翔光電技術有限公司 備案號:蘇ICP備16003332號-1 技術支持:化工儀器網 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關注微信
主站蜘蛛池模板: 亚洲阿v天堂在线z2024 | 国产无码不卡 | 性色av一区二区三区咪爱四虎 | 亚洲国产精品国自产拍av | 国产毛多水多女人A片 | 日韩精品人妻无码久久影院 | 巜隔壁放荡人妻bd高清 | 国产肥臀熟女极品国产馆 | 欧美日产成人高清视频 | 久久久久亚洲av成人无码电影 | 国产社区视频在线永久免费观看 | 2024中文字幕乱码免费 | 亚洲视频在线一区二区三区 | 亚洲午夜精品一区二区三区 | 少妇无码专区视频网站 | 久久只有这里有精品4 | 亚洲91精品麻豆国产系列在线 | 97精品久久人人妻人人做人人爱 | 天美传媒MV视频播放 | 人与嘼在线A片观看免费 | 亚洲国产中文精品无码专区网站 | 精品一区二区三区五区六区 | 国产精品成久久久久三级四虎 | 亚洲精品午夜久久 亚洲精品免费网址 | 二区av人妻少妇 | 国产野外一区二区理伦片视频在线 | 少妇人妻偷人精品视蜜桃 | 丰满少妇被猛烈高清播放 | 亚洲国产制服丝袜无码av | 91日韩天堂一区二区二区 | 日亚韩在线无码一区二区三区 | 国产亚洲一区二区三区在线观看 | 丁香五月婷婷综合激情在线 | 波多野结衣爽到高潮大喷 | 亚洲VA天堂VA欧美片A在线 | 波多野结衣av一区二区无码 | 真实国产乱子伦对白视频37P | 人人在线碰碰视频免费 | 成人国产经典视频在线观看网 | 日韩欧美亚洲国产另类 | 国产高清亚洲精品26u |