中日韩一卡二卡三卡四卡免-中日韩一卡2卡三卡4卡在线-中日韩va无码-中国一区二区三区在线观看-中国无码人妻丰满熟妇啪啪软件-中国无码免费视频观看

撥號18861759551

你的位置:首頁 > 技術(shù)文章 > Advantages of Fresnel Lenses

技術(shù)文章

Advantages of Fresnel Lenses

技術(shù)文章

Advantages of Fresnel Lenses

Fresnel lenses consist of a series of concentric grooves etched into plastic. Their thin, lightweight construction, availability in small as well as large sizes, and excellent light gathering ability make them useful in a variety of applications.Fresnel lenses are most often used in light gathering applications, such as condenser systems or emitter/detector setups. They can also be used as magnifiers or projection lenses in illumination systems, and image formulation.

A Fresnel (pronounced fray-NEL) lens replaces the curved surface of a conventional optical lens with a series of concentric grooves. These contours act as individual refracting surfaces, bending parallel light rays to a common focal length (Figure 1). As a result, a Fresnel lens, while physically narrow in profile, is capable of focusing light similar to a conventional optical lens but has several advantages over its thicker counterpart.

 

THE THEORY OF FRESNEL LENSES

The driving principle behind the conception of a Fresnel lens is that the direction of propagation of light does not change within a medium (unless scattered). Instead, light rays are only deviated at the surfaces of a medium. As a result, the bulk of the material in the center of a lens serves only to increase the amount of weight and absorption within the system.

 

To take advantage of this physical property, 18th-century physicists began experimenting with the creation of what is known today as a Fresnel lens. At that time, grooves were cut into a piece of glass in order to create annular rings of a curved profile. This curved profile, when extruded, formed a conventional, curved lens – either spherical or aspherical (Figure 2). Due to this similar optical property compared to a conventional optical lens, a Fresnel lens can offer slightly better focusing performance, depending upon the application. In addition, high groove density allows higher quality images, while low groove density yields better efficiency (as needed in light gathering applications). However, it is important to note that when high precision imaging is required, conventional singlet, doublet, or aspheric optical lenses are still best.

MANUFACTURING FRESNEL LENSES

The first Fresnel lenses were made by tediously grinding and polishing glass by hand. Eventually, molten glass was poured into molds, but it was only with the development of optical-quality plastics and injection-molding technology in the 20th-century that the use of Fresnel lenses in many industrial and commercial applications became practical.

 

Fresnel lenses can be manufactured from a variety of substrates. They are manufactured from acrylic to polycarbonate to vinyl, depending on the desired wavelength of operation. Acrylic is the most common substrate due to its high transmittance in the visible and ultraviolet (UV) regions, but polycarbonate is the substrate of choice in harsh environments due to its resistance to impact and high temperature.

 

APPLICATION EXAMPLES

While French physicist Augustin-Jean Fresnel (1788 - 1827) was not the first to conceptualize a Fresnel lens, he was able to popularize it by integrating it into lighthouses. Since then, Fresnel lenses have been utilized in a variety of applications, from light collimation and light collection to magnification.

 

Light Collimation

 

A Fresnel lens can easily collimate a point source by placing it one focal length away from the source. In a finite-conjugate system, the grooved side of the Fresnel lens should face the longer conjugate (Figures 3 - 4) because this produces the best performance.

Figure 3: Light Collimation of a Point Source with a Fresnel Lens

 

Light Collection

 

One of the most common applications for a Fresnel lens is the collection of solar light, which is considered very nearly parallel (an infinite-conjugate system). Using a Fresnel lens for light collection is ideal for concentrating light onto a photovoltaic cell or to heat a surface. For example, a Fresnel lens can be used for popular home maintenance such as heating a home or pool! In these cases, the overall surface area of the lens determines the amount of collected light.

Figure 4: Light Collimation of a Point Source with a Fresnel Lens

 

Magnification

 

Another common application for a Fresnel lens is magnification. It can be used as a magnifier or projection lens; however, due to the high level of distortion, this is not recommended. Also, the image quality does not compare to that of a higher-precision system given the amount of distortion.

 

While commonly found in solar applications, Fresnel lenses are ideal for any application requiring inexpensive, thin, lightweight positive lens elements. Fresnel lenses are not new technology, but their pervasiveness has increased with improvements in manufacturing techniques and materials. Fresnel lenses are truly unique optical lenses which make them a great tool for a range of interesting and fun optical designs.

聯(lián)系我們

地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:[email protected]
24小時(shí)在線客服,為您服務(wù)!

版權(quán)所有 © 2025 江陰韻翔光電技術(shù)有限公司 備案號:蘇ICP備16003332號-1 技術(shù)支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關(guān)注微信
主站蜘蛛池模板: 91麻豆产精品久久久久久 | 国产91av在线免费观看 | 九九精品久久久久久噜噜 | 日本欧美一区二区三区在线 | 男女做爽爽爽视频免费软件 | 宝贝乖把腿分大一点h欧阳凝小说 | 麻豆国产成人免费视频 | 国产中文精品无码欧美综合小说 | 人妻体内射精一区二区三四 | a级黄韩国在线观 | 无码高潮少妇多水多毛 | 亚洲精品高清一二区久久 | 国产在线观看免费 | 99久久香蕉国产综合影院 | 久久久精品久久久久久 | 国产精品无码一区二区三区毛片 | 国产真实乱子伦精品视 | av成人无码无在线观看 | 国产av福利久久精 | 国产精选 第1页-要看tv | 九九精品国产欧美一区二区 | 爱爱视频一区二区三区 | 特级精品毛片免费观看 | 亚洲一区二区三区免费看 | 麻豆爽爽妓女一区二区三区 | 波多野结衣强奷系列在线高清在线观看 | 麻花豆传媒剧国产MV在线 | 人人干人人操导航 | 久久亚洲一区二区 | 成年无码av片在线免缓冲 | 久久99精品久久久久久国产越南 | 国产午夜精品在人线播放 | 国产a级作爱片免费看 | 国产精品一级视频 | 欧美大片精品免费永久看nba | 一区二区三区好的精华液杨超越 | 精品国内成人综合亚洲 | 亚州日韩精品AV片无码中文 | 成人a动漫区| 精品刺激无码在线观看 | 日韩人妻av无码综合一区 |