中日韩一卡二卡三卡四卡免-中日韩一卡2卡三卡4卡在线-中日韩va无码-中国一区二区三区在线观看-中国无码人妻丰满熟妇啪啪软件-中国无码免费视频观看

撥號18861759551

你的位置:首頁 > 技術文章 > 5光學系統的機械設計,裝配和對準的注意事項

技術文章

5光學系統的機械設計,裝配和對準的注意事項

技術文章

5 Considerations for the Mechanical Design, Assembly, and Alignment of Optical Systems

To expand on the tips provided in 5 Tips for Designing with Off-the-Shelf Optics, here are some important assembly items to consider when working on an optical design. Typically, optical designers use ray tracing software to construct an optical design, however, the software presents a system that is, essentially, floating in air. When you ultimay purchase and/or manufacture the optical components, you'll need a way to mount, assemble, and possibly align that system. By including considerations for mechanical design, assembly, and alignment in the optical design stages, you can save significant time and reduce the need for costly changes and component redesign later.

 

1. Consider Package Size and Weight

One of the first things you should consider when planning how to mount optical components is potential size or weight limitations this can drive your overall approach to the mechanical mounting design for the optics. Are you setting up prototype components on a breadboard with an entire table available? Is there a limited amount of space? Is this being carried by a person? These types of considerations may limit the number of possible mounting and/or alignment options. You should also consider where the object, image, and s of your system will be located, and if you need to be able to access them after the final assembly. The s, a fixed-size or adjustable physical aperture that limits the bundle of light that can pass through a system, can be located somewhere within the optical design, or at either end. It is important to ensure that there is enough space where the location of the s is in your optical design so it can be physically achieved in the mechanical design. As shown in Figure 1, the left optical design example is a feasible design, whereas it is unlikely an adjustable iris could be fit between the doublets in the right example. The potential space restriction is an easy fix in the optical design stage, but difficult to fix later on.

Figure 1: Optical design examples of a 1:1 image relay system requiring an adjustable iris

 

2. Is it Designed to be Reassembled?

When you are planning the assembly process for your optical design, one detail that can drive design decisions is whether or not the assembly is one-time only or if it will be disassembled and reassembled. If there is no need to disassembly, then using adhesives or other permanent/semi-permanent mounting methods may not be a problem. However, if you need to disassemble or modify the system, consider in advance how this will be done. If you are swapping out parts, such as rotating different coated mirrors in and out of the same setup, determine if you will be able to access those components easily and if you need to maintain the alignment of the component. This is where kinematic mounting options or the TECHSPEC® Optical Cage System, such as those shown in Figure 2, can save you a lot of time and frustration.

 

3. Understand Motion and Alignment Requirements

For some simple systems, optical components can simply be placed in their holders or a barrel and the assembly and alignment is complete without need for adjustments. However, in many cases, optical components must be aligned properly and possibly adjusted during use to maintain the required design performance. When creating an optical design, consider if you will need adjustments for decenter (translation in X and Y), axial motion (translation in Z), angular motion (tip/tilt), and in the case of components such as polarizers, waveplates, or diffraction gratings, orientation. Such adjustments may be required for individual components, the light source, the camera/image plane, or the entire system. Not only is it important to know what adjustment, the more expensive the mechanics will be and more skill we be required from the assembler. Understanding the motion requirements can save time and money.

 

4. Avoid Stray Light

Stray light is a general term that applies to any unwanted light in an optical system. Light traveling where it was not intended in the optical design can cause a variety of issues including ghost (multiple) images, reduced image contrast, or even glass failures in the case of high power laser applications. Standard ray tracing software packages typically have some level of first order stray light analysis that can be used to evaluate if this is a potential concern for your optical system. More thorough investigations can also be completed using a non-sequential ray trace analysis. Figure 3 shows a stray light analysis completed in FRED (optical design software) to investigate the effects of light reflecting off a particular metal surface.

Figure 3: Stray Light Analysis can help Avoid Image Contrast Problems in the Final Design

 

If stray light is a potential problem for your optical system, there are a few approaches to mitigate the effects. For example, threading the inner diameters of barrels or placing additional apertures to block stray light from exiting the system can be used to block unwanted rays. Additionally, mounting components can be blackened (i.e. black anodized for aluminum or black oxide for steels) or covered with material. The edges or lenses can also be blackened with paint or ink, as shown in Figure 4. Ideally, any stray light problems should be recognized during the design phase and the elements or image plane can be moved or modified to resolve the issue.

 

5. Watch Out For Environmental Effects

As mentioned earlier, when designing an optical system using modeling software, it is typically floating in air with no environmental effects acting upon it. In reality, however, the optical system may see many adverse environmental conditions including stress, acceleration/shock (if it is dropped), vibration (during shipment or operation), temperature fluctuations, or it may need to operate underwater or in another substance. If you anticipate your optical system will not be operating in air under controlled conditions, further analysis should be completed to either minimize the environmental effects through the design (passive solution) or having an active feedback loop to maintain the performance of the system. Most optical design programs can stimulate some of these aspects, such as temperature and pressure, but additional programs might be required for a complete environmental analysis.

聯系我們

地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:[email protected]
24小時在線客服,為您服務!

版權所有 © 2025 江陰韻翔光電技術有限公司 備案號:蘇ICP備16003332號-1 技術支持:化工儀器網 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關注微信
主站蜘蛛池模板: 成人 网址 | 天天综合精品三区 | 狠狠干2023| 亚洲日本韩国在线 | 大陆老熟女嗷嗷叫AV在线 | 国产精品毛片v一区二区三区 | 911精品国产一区二区在线 | 50岁人妻丰满熟妇 | 成年视频xxxxxx在线 | 成人无码区免费 | 亚洲精品一本之道高清乱码 | av一本久道久久综合久久鬼色 | 自拍日韩图片专区 | 久久精品国产v曰韩v亚洲爆乳 | 波多洁野衣一 | 国产91短视频 | 日本欧美大码aⅴ在线播放 日本欧美国产在线观看第一页 | 精品久久久无码人妻中文字幕边打电话 | 18禁无遮挡羞羞污污污污网站 | a国产乱理伦片在 | 国产丰满老熟女重口对白 | 福利视频一区亚洲 | a级片在线观看免费 | 精品久久久久久无码中文野结衣 | 日韩欧美国产91丝袜 | 国产成人av在线播放不卡 | 丁香婷婷开心激情深爱五月 | 蜜桃MV在线播放免费观看网站 | 91久久综合九色综合 | 无限观看韩国动漫免费观看大全 | 亚洲国产av无码综合原创国产 | 欧美精品乱码视频一二专区 | 草蜢视频www一区二区 | 五月丁香综合缴情六月小说 | av极品视觉盛宴 | 激情综合婷婷 | 人与动动物a级毛片中文 | 精品乱码久久久久久中文字幕 | 成人A片产无码免费视频软件 | 成年美女黄网站色奶头大全 | 成人av天堂一二三在线观看 |